1,022 research outputs found

    Integrated Software Synthesis for Signal Processing Applications

    Get PDF
    Signal processing applications usually encounter multi-dimensional real-time performance requirements and restrictions on resources, which makes software implementation complex. Although major advances have been made in embedded processor technology for this application domain -- in particular, in technology for programmable digital signal processors -- traditional compiler techniques applied to such platforms do not generate machine code of desired quality. As a result, low-level, human-driven fine tuning of software implementations is needed, and we are therefore in need of more effective strategies for software implementation for signal processing applications. In this thesis, a number of important memory and performance optimization problems are addressed for translating high-level representations of signal processing applications into embedded software implementations. This investigation centers around signal processing-oriented dataflow models of computation. This form of dataflow provides a coarse grained modeling approach that is well-suited to the signal processing domain and is increasingly supported by commercial and research-oriented tools for design and implementation of signal processing systems. Well-developed dataflow models of signal processing systems expose high-level application structure that can be used by designers and design tools to guide optimization of hardware and software implementations. This thesis advances the suite of techniques available for optimization of software implementations that are derived from the application structure exposed from dataflow representations. In addition, the specialized architecture of programmable digital signal processors is considered jointly with dataflow-based analysis to streamline the optimization process for this important family of embedded processors. The specialized features of programmable digital signal processors that are addressed in this thesis include parallel memory banks to facilitate data parallelism, and signal-processing-oriented addressing modes and address register management capabilities. The problems addressed in this thesis involve several inter-related features, and therefore an integrated approach is required to solve them effectively. This thesis proposes such an integrated approach, and develops the approach through formal problem formulations, in-depth theoretical analysis, and extensive experimentation

    Parameterized Looped Schedules

    Get PDF
    This paper is concerned with the compact representation of execution sequences in terms of efficient looping constructs. Here, by a looping construct we mean a compact way of specifying a finite repetition of a set of execution primitives (“instructions”). Such compaction, which can be viewed as a form of hierarchical run-length encoding, has application in many embedded software contexts, including efficient control generation for Kahn processes, and software synthesis for static dataflow models of computation, such as synchronous dataflow and cyclo-static dataflow. In this paper, we significantly generalize previous models for loop-based code compaction of DSP programs to yield a configurable code compression methodology that exhibits a broad range of achievable trade-offs. Specifically, we formally develop and apply to DSP hardware and software implementation a parameterizable loop scheduling approach with compact format, dynamic reconfigurability, and low overhead decompression

    Late initiation of renal replacement therapy is associated with worse outcomes in acute kidney injury after major abdominal surgery

    Get PDF
    Introduction Abdominal surgery is probably associated with more likelihood to cause acute kidney injury (AKI). The aim of this study was to evaluate whether early or late start of renal replacement therapy (RRT) defined by simplified RIFLE (sRIFLE) classification in AKI patients after major abdominal surgery will affect outcome. Methods A multicenter prospective observational study based on the NSARF ( National Taiwan University Surgical ICU Associated Renal Failure) Study Group database. 98 patients (41 female, mean age 66.4 +/- 13.9 years) who underwent acute RRT according to local indications for post-major abdominal surgery AKI between 1 January, 2002 and 31 December, 2005 were enrolled The demographic data, comorbid diseases, types of surgery and RRT, as well as the indications for RRT were documented. The patients were divided into early dialysis (sRIFLE-0 or Risk) and late dialysis (LD, sRIFLE -Injury or Failure) groups. Then we measured and recorded patients' outcome including in-hospital mortality and RRT wean-off until 30 June, 2006. Results The in-hospital mortality was compared as endpoint. Fifty-seven patients (58.2%) died during hospitalization. LD (hazard ratio (HR) 1.846; P = 0.027), old age (HR 2.090; P = 0.010), cardiac failure (HR 4.620; P < 0.001), pre-RRT SOFA score (HR 1.152; P < 0.001) were independent indicators for in-hospital mortality. Conclusions The findings of this study support earlier initiation of acute RRT, and also underscore the importance of predicting prognoses of major abdominal surgical patients with AKI by using RIFLE classification

    Acute-on-chronic kidney injury at hospital discharge is associated with long-term dialysis and mortality

    Get PDF
    Existing chronic kidney disease (CKD) is among the most potent predictors of postoperative acute kidney injury (AKI). Here we quantified this risk in a multicenter, observational study of 9425 patients who survived to hospital discharge after major surgery. CKD was defined as a baseline estimated glomerular filtration rate <45ml/min per 1.73m2. AKI was stratified according to the maximum simplified RIFLE classification at hospitalization and unresolved AKI defined as a persistent increase in serum creatinine of more than half above the baseline or the need for dialysis at discharge. A Cox proportional hazard model showed that patients with AKI-on-CKD during hospitalization had significantly worse long-term survival over a median follow-up of 4.8 years (hazard ratio, 3.3) than patients with AKI but without CKD. The incidence of long-term dialysis was 22.4 and 0.17 per 100 person-years among patients with and without existing CKD, respectively. The adjusted hazard ratio for long-term dialysis in patients with AKI-on-CKD was 19.8 compared to patients who developed AKI without existing CKD. Furthermore, AKI-on-CKD but without kidney recovery at discharge had a worse outcome (hazard ratios of 4.6 and 213, respectively) for mortality and long-term dialysis as compared to patients without CKD or AKI. Thus, in a large cohort of postoperative patients who developed AKI, those with existing CKD were at higher risk for long-term mortality and dialysis after hospital discharge than those without. These outcomes were significantly worse in those with unresolved AKI at discharge

    Preoperative Proteinuria Is Associated with Long-Term Progression to Chronic Dialysis and Mortality after Coronary Artery Bypass Grafting Surgery

    Get PDF
    AIMS: Preoperative proteinuria is associated with post-operative acute kidney injury (AKI), but whether it is also associated with increased long-term mortality and end-stage renal disease (ESRD) is unknown. METHODS AND RESULTS: We studied 925 consecutive patients undergoing CABG. Demographic and clinical data were collected prospectively, and patients were followed for a median of 4.71 years after surgery. Proteinuria, according to dipstick tests, was defined as mild (trace to 1+) or heavy (2+ to 4+) according to the results of the dipstick test. A total of 276 (29.8%) patients had mild proteinuria before surgery and 119 (12.9%) patients had heavy proteinuria. During the follow-up, the Cox proportional hazards model demonstrated that heavy proteinuria (hazard ratio [HR], 27.17) was an independent predictor of long-term ESRD. There was a progressive increased risk for mild proteinuria ([HR], 1.88) and heavy proteinuria ([HR], 2.28) to predict all-cause mortality compared to no proteinuria. Mild ([HR], 2.57) and heavy proteinuria ([HR], 2.70) exhibited a stepwise increased ratio compared to patients without proteinuria for long-term composite catastrophic outcomes (mortality and ESRD), which were independent of the baseline GFR and postoperative acute kidney injury (AKI). CONCLUSION: Our study demonstrated that proteinuria is a powerful independent risk factor of long-term all-cause mortality and ESRD after CABG in addition to preoperative GFR and postoperative AKI. Our study demonstrated that proteinuria should be integrated into clinical risk prediction models for long-term outcomes after CABG. These results provide a high priority for future renal protective strategies and methods for post-operative CABG patients

    KinasePhos 2.0: a web server for identifying protein kinase-specific phosphorylation sites based on sequences and coupling patterns

    Get PDF
    Due to the importance of protein phosphorylation in cellular control, many researches are undertaken to predict the kinase-specific phosphorylation sites. Referred to our previous work, KinasePhos 1.0, incorporated profile hidden Markov model (HMM) with flanking residues of the kinase-specific phosphorylation sites. Herein, a new web server, KinasePhos 2.0, incorporates support vector machines (SVM) with the protein sequence profile and protein coupling pattern, which is a novel feature used for identifying phosphorylation sites. The coupling pattern [XdZ] denotes the amino acid coupling-pattern of amino acid types X and Z that are separated by d amino acids. The differences or quotients of coupling strength CXdZ between the positive set of phosphorylation sites and the background set of whole protein sequences from Swiss-Prot are computed to determine the number of coupling patterns for training SVM models. After the evaluation based on k-fold cross-validation and Jackknife cross-validation, the average predictive accuracy of phosphorylated serine, threonine, tyrosine and histidine are 90, 93, 88 and 93%, respectively. KinasePhos 2.0 performs better than other tools previously developed. The proposed web server is freely available at http://KinasePhos2.mbc.nctu.edu.tw/

    Clonal evolution and clinical implications of genetic abnormalities in blastic transformation of chronic myeloid leukaemia

    Get PDF
    Blast crisis (BC) predicts dismal outcomes in patients with chronic myeloid leukaemia (CML). Although additional genetic alterations play a central role in BC, the landscape and prognostic impact of these alterations remain elusive. Here, we comprehensively investigate genetic abnormalities in 136 BC and 148 chronic phase (CP) samples obtained from 216 CML patients using exome and targeted sequencing. One or more genetic abnormalities are found in 126 (92.6%) out of the 136 BC patients, including the RUNX1-ETS2 fusion and NBEAL2 mutations. The number of genetic alterations increase during the transition from CP to BC, which is markedly suppressed by tyrosine kinase inhibitors (TKIs). The lineage of the BC and prior use of TKIs correlate with distinct molecular profiles. Notably, genetic alterations, rather than clinical variables, contribute to a better prediction of BC prognosis. In conclusion, genetic abnormalities can help predict clinical outcomes and can guide clinical decisions in CML

    Ciprofloxacin-resistant Salmonella enterica Typhimurium and Choleraesuis from Pigs to Humans, Taiwan

    Get PDF
    We evaluated the disk susceptibility data of 671 nontyphoid Salmonella isolates collected from different parts of Taiwan from March 2001 to August 2001 and 1,261 nontyphoid Salmonella isolates from the National Taiwan University Hospital from 1996 to 2001. Overall, ciprofloxacn resistance was found in 2.7% (18/671) of all nontyphoid Salmonella isolates, in 1.4% (5/347) of Salmonella enterica serotype Typhimurium and in 7.5% (8/107) in S. enterica serotype Choleraesuis nationwide. MICs of six newer fluoroquinolones were determined for the following isolates: 37 isolates of ciprofloxacin-resistant (human) S. enterica Typhimurium (N = 26) and Choleraesuis (N = 11), 10 isolates of ciprofloxacin-susceptible (MIC <1 μg/mL) (human) isolates of these two serotypes, and 15 swine isolates from S. enterica Choleraesuis (N = 13) and Typhmurium (N = 2) with reduced susceptibility to ciprofloxacin (MIC >0.12 μg/mL). Sequence analysis of the gryA, gyrB, parC, parE, and acrR genes, ciprofloxacin accumulation; and genotypes generated by pulsed-field gel electrophoresis with three restriction enzymes (SpeI, XbaI, and BlnI) were performed. All 26 S. enterica Typhimurium isolates from humans and pigs belonged to genotype I. For S. enterica Choleraesuis isolates, 91% (10/11) of human isolates and 54% (7/13) of swine isolates belonged to genotype B. These two genotypes isolates from humans all exhibited a high-level of resistance to ciprofloxacin (MIC 16–64 μg/mL). They had two-base substitutions in the gyrA gene at codons 83 (Ser83Phe) and 87 (Asp87Gly or Asp87Asn) and in the parC gene at codon 80 (Ser80Arg, Ser80Ile, or Ser84Lys). Our investigation documented that not only did these two S. enterica isolates have a high prevalence of ciprofloxacin resistance nationwide but also that some closely related ciprofloxacin-resistant strains are disseminated from pigs to humans
    corecore